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Abstract. Various difficulties have been encountered in using decision set-based vector maximiza-
tion methods to solve a multiple objective linear programming problem (MOLP). Motivated by these
difficulties, some researchers in recent years have suggested that outcome set-based approaches
should instead be developed and used to solve problem (MOLP). In this article, we present a fi-
nite algorithm, called the Outer Approximation Algorithm, for generating the set of all efficient
extreme points in the outcome set of problem (MOLP). To our knowledge, the Outer Approximation
Algorithm is the first algorithm capable of generating this set. As a by-product, the algorithm also
generates the weakly efficient outcome set of problem (MOLP). Because it works in the outcome set
rather than in the decision set of problem (MOLP), the Outer Approximation Algorithm has several
advantages over decision set-based algorithms. It is also relatively easy to implement. Preliminary
computational results for a set of randomly-generated problems are reported. These results tangibly
demonstrate the usefulness of using the outcome set approach of the Outer Approximation Algorithm
instead of a decision set-based approach.

Key words: Efficient set, Global optimization, Multiple objective linear programming, Outer ap-
proximation, Vector maximization

1. Introduction and motivation

In a multiple objective mathematical programming problem (P), the goal is to
simultaneously maximizep > 2 noncomparable objective functions over a non-
empty feasible regionX in <n. To help the decision maker (DM) find a most
preferred solution to problem (P), researchers have shown that one can generally
restrict one’s attention to the subset of feasible solutions called theefficient (or
nondominated) decision set. Motivated by this result, researchers have developed
a variety of methods for generating all, or at least some, of the efficient decision
set for the DM to examine. The hope is that the DM will thereby be able to de-
tect inherent tradeoffs among the objective functions and choose a most preferred
solution. Included among these approaches are thevector maximizationapproach,
interactiveapproaches, and several others; see, e.g., the books and survey papers
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by Cohon [1], Evans [2], Goicoechea et al. [3], Luc [4], Sawaragi et al. [5], Steuer
[6], Yu [7], and Zeleny [8] and references therein.

The vector maximization concept dates from the 1950s [9], but the approach
was not explored in earnest until almost 20 years later [10–13]. The goal in the
vector maximization approach is to generate either all of the efficient decision set,
or a representative portion thereof, without any input from the DM. Subsequently,
the entire set generated is presented to the DM who, without further aid from the
analyst, seeks a most preferred solution from it.

In practice, the vector maximization approach has had some success in aiding
the DM to solve problem (P), but this success has been relatively limited. The
primary reason for this is that the efficient decision set of problem (P) is generally a
complicated, nonconvex set that grows rapidly as the size of the problem increases.
Consequently, generating this set in its entirety is possible only in certain special
cases; see, e.g., Yu and Zeleny [13], Benson [14], Isermann [15], Bitran [16],
Villarreal and Karwan [17], and Kostreva and Wiecek [18]. Even in these special
cases, the computational effort required to generate all of the efficient decision
set becomes rapidly unmanageable and seems to grow exponentially with problem
size; see, for instance, Steuer [6], Evans and Steuer [12], and Marcotte and Soland
[19]. Furthermore, the sheer size of the efficient decision set often becomes so huge
that it either becomes too difficult to describe to the DM in a meaningful way or
it can overwhelm the DM to the extent that he or she is not able to choose a most
preferred solution from it [20].

WhenX is a polyhedral set and thep objective functions of problem (P) are
linear functions〈ci, x〉, i = 1, 2, . . . , p, whereci ∈ <n for eachi, then problem
(P) is called amultiple objective linear programming problem. The problem may
then be written

(MOLP) VMAX : Cx, s.t.x ∈ X,

whereC is thep × n matrix whoseith row contains the vectorci for eachi =
1, 2, . . . , p. Problem (MOLP) is one of the simpler and more common cases of
the multiple objective mathematical programming problem (P). It has been studied
in literally hundreds of articles, chapters in books, and books; see, e.g., Armand
[23], Armand and Malivert [24], Benson [21, 25, 26], Benson and Aksoy [27],
Ecker and Kouada [28], Ecker et al. [29], Gal [30], Zeleny [31], also [1–8, 11–13,
15, 20] and references therein. Nevertheless, vector maximization approaches for
problem (MOLP) have also had only limited success.

In the case of problem (MOLP), the efficient decision setXE consists of a
union of faces ofX. While XE is also always a connected set, generally, it is
a complicated nonconvex subset of the boundary ofX [6, 7, 21, 22]. The vec-
tor maximization methods for problem (MOLP) fall into two classes. One class
consists of methods that generate the entire efficient decision setXE of problem
(MOLP), while the second class consists of methods for generating only the set of
all extreme points ofX that belong toXE.
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Some of the most well-known algorithms for generating all ofXE can be found
in [6, 7, 13, 15, 22–24, 29–31]. These algorithms employ various search schemes
to iteratively identify and test faces ofX for efficiency. Regardless of the schemes
used, these methods have met with only limited success in practice. There are at
least two reasons for this.

First, the computational demands of finding all ofXE grow rapidly with prob-
lem size, so that mathematically only relatively-small problems can be analyzed;
see, e.g., Benson and Sayin [32] and [6, 22]. Second, the sheer size and nature
of XE have so far precluded the possibility of finding a concrete, useful way of
presenting it in its entirety to the DM without overwhelming him or her; see, e.g.,
[20, 22, 32].

Let Xex denote the set of all extreme points ofX. The second class of vector
maximization methods for problem (MOLP) consists of algorithms for generating
all of XE ∩ Xex, that is, all of the efficient extreme points in the decision setX.
Representative algorithms of this type can be found in Steuer [33] and in [2, 3, 6–8,
11–13, 28, 31]. The rationale for this approach is that sinceXE ∩ Xex is a finite,
discrete set that is smaller than all ofXE, it ought to be more computationally
practical to generate it and to present it to the DM without overwhelming him or
her thanXE.

Unfortunately, in practice, methods for problem (MOLP) that seek to generate
XE ∩ Xex have also achieved only limited success. There are at least two major
reasons for this.

First, althoughXE ∩Xex is smaller thanXE, it was soon found that the number
of elements inXE ∩ Xex generally grows exponentially with problem size. As a
result, as the size of problem (MOLP) grows,XE ∩ Xex, like XE, can quickly
become computationally burdensome to generate, and its sheer size can easily
overwhelm the DM [6, 34–38]. For example, we used the ADBASE algorithm
of Steuer [33] on randomly-generated problems with four objective functions. We
found that whenn = 30 andX is described by 25 linear inequalities, the average
number of efficient extreme points inX in a set of 10 randomly-generated prob-
lems was 7245.90. When we increasedn to 50 andX was described by 50 linear
inequalities, this average jumped to 83, 780.60 points. Withn = 60 and with 50
linear inequalities describingX, each of the 10 random problems that we generated
exceeded the solution capacity of ADBASE, indicating that the number of efficient
extreme points in each of these problems exceeded 200, 000.

Second, most algorithms for generatingXE ∩ Xex require some sort of extra
bookkeeping or backtracking schemes that are not necessarily required to generate
all of XE. These schemes make implementations of these methods more involved
and slower [6, 12, 21, 22].

Motivated, in part, by these difficulties, a handful of researchers in recent years
has begun to turn their attention to the mathematics and tools for generating all or
portions of theefficient outcome setY=E , rather than the efficient decision set, for
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problem (MOLP), where

Y=E = {Cx | x ∈ XE}; (1)

see, for instance, [32, 34, 35, 39–44]. There are at least three reasons for this.
First,Y=E invariably has a much simpler structure and smaller size thanXE; see,

e.g., [34, 35, 39–44]. This is, in part, becauseY=E ⊆ <p andXE ⊆ <n, where
p is typically much smaller thann, often by factors of 10, 100 or more. As a
result, generating all or portions ofY=E is expected, in general, to be less demanding
computationally than generating all or portions ofXE. In addition, the probability
of overwhelming the DM by generating all or portions ofY=E is expected to be less
than ifXE or portions ofXE were generated.

Second, it has been shown that, in practice, the DM prefers basing his or her
choice of a most preferred solution primarily onY=E , rather thanXE. For instance,
arguments to this effect are given in [32, 34, 35].

Third, it is well known that frequently many points inXE are mapped byC
onto either a single point inY=E or onto essentially-equivalent outcomes inY=E ; see,
for instance, [39, 40, 45]. Thus, generating points directly fromY=E avoids risking
redundant calculations of points fromXE that would be of little or no use to the
DM.

Recently some researchers have suggested that to more efficiently generate parts
or all of Y=E (or XE), tools from theglobal optimizationliterature might be useful;
see, e.g., [32, 46–48]. This suggestion is motivated by the fact that these tools are
suited, among other things, to exploring complicated nonconvex sets.

In this article, we present and validate a new algorithm, called the Outer Ap-
proximation Algorithm, for generating the set of all extreme points ofY=E ; that is,
the set of all efficient extreme points in the outcome set for problem (MOLP). The
algorithm, to our knowledge, is the first algorithm capable of generating this set.
It uses a technique called outer approximation. This technique has been used suc-
cessfully to help solve various single-objective optimization problems, including
global optimization problems. The Outer Approximation Algorithm is shown to
be finite. As a by-product, the algorithm also generates the entire weakly efficient
outcome set of problem (MOLP).

The article is organized as follows. In the next section, theoretical prerequisites
for presenting and analyzing the Outer Approximation Algorithm are given. In
Section 3, the algorithm is presented and shown to generate the set of all efficient
extreme points in the outcome set of problem (MOLP) after a finite number of
iterations. The results of some preliminary computational experiments with a pro-
totype VS-FORTRAN code that we have written that implements the algorithm are
given and briefly analyzed in Section 4. In Section 5 we conclude that the Outer
Approximation Algorithm offers significant promise of allowing decision makers
to more easily solve practical applications of problem (MOLP) and to solve larger
instances of problem (MOLP) than can presently be solved by decision set-based
vector maximization algorithms.
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2. Theoretical prerequisites

We will assume henceforth that in problem (MOLP),X is a nonempty, compact
polyhedron given by

X = {x ∈ <n | Ax = b, x > 0},
whereA is anm× n matrix andb ∈ <m. We will also assume in problem (MOLP)
that the rank ofC equalsq, whereq > 1. LetY= be defined by

Y= = {Cx | x ∈ X}.
The setY= is called theoutcome setfor problem (MOLP); see, for instance, [32,
34, 35, 39, 40]. Notice thaty ∈ Y= iff y = Cx for somex ∈ X. Other studies [7,
32, 35, 39] have used the setY6 = {y ∈ <p | y 6 Cx for somex ∈ X} to good
effect as well. We shall not focus, however, onY6 here. A pointx0 ∈ <n is called
an efficient (or nondominated) solution for problem (MOLP) whenx0 ∈ X and
there exists no pointx ∈ X such thatCx > Cx0 andCx 6= Cx0. Similarly, a point
y0 ∈ <p is called anefficient (or nondominated) outcomefor problem (MOLP)
wheny0 ∈ Y= and there exists noy ∈ Y= such thaty > y0 andy 6= y0 [7,
32, 39]. The set of all efficient solutions and the set of all efficient outcomes for
problem (MOLP) are called theefficient decision setand theefficient outcome set,
respectively, for problem (MOLP) and are denotedXE andY=E , respectively (cf.
Section 1). It is an easy exercise to show thatY=E may be equivalently defined by
Equation (1) in Section 1; see, for instance, [50].

A point x ∈ <n is called aweakly efficient(or weakly nondominated) solution
for problem (MOLP) whenx ∈ X and there exists nox ∈ X such thatCx > Cx.
Similarly, a pointy ∈ <p is called aweakly efficient(or weakly nondominated)
outcomefor problem (MOLP) wheny ∈ Y= and there exists noy ∈ Y= such that
y > y. Theweakly efficient decision setXWE and theweakly efficient outcome set
Y=WE are defined similarly toXE andY=E . It is easy to show thatY=WE may also be
defined by the equation

Y=WE = {Cx | x ∈ XWE}.
It can be shown that the outcome setY= is a nonempty, compact polyhedron in<p;
see, e.g., [49]. We will have some interest in the dimension ofY= in this article. In
this regard, we will find the following result useful. For any convex setZ, let dimZ

denote the dimension ofZ.

PROPOSITION 2.1.The dimension of Y= satisfiesdimY=6q.
Proof. Let R(C) = {Cx|x ∈ <n} denote the range ofC, and let N(CT ) = {z ∈

<p|CT z = 0} denote the null space ofCT . Then, from elementary linear algebra,
the sum of dimR(C) and dimN(CT ) equalsp. Furthermore, since the rank ofC
equalsq, dimN(CT ) = p-q. The latter two statements imply the dimR(C) =q.
BecauseY= is a subset of R(C), this implies that dimY= 6 q. 2
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For eachi = 1,2, . . . , p, let

yAI
i = minyi, s.t.y ∈ Y=.

The vectoryAI ∈ <p is called theanti-ideal outcomefor problem (MOLP). Notice
that sinceX is nonempty and compact, the components ofyAI are all finite.

Let ŷ ∈ <p satisfyŷ < yAI , and consider the setY given by

Y = {y ∈ <p | ŷ 6 y 6 Cx for somex ∈ X}.
The setY is instrumental in the algorithm to be presented in Section 3 for reasons
that will become clear shortly.

PROPOSITION 2.2.The setY is a nonempty, bounded polyhedron in<p of di-
mensionp.

Proof.Sinceŷ < yAI 6 Cx for all x ∈ X, whereX is nonempty and bounded,
the definition ofY implies thatY is a nonempty, bounded set in<p. Notice thatY
may be written

Y = P1 ∩ (Y= + P2), (2)

where
P1 = {y ∈ <p | y > ŷ}

and
P2 = {z ∈ <p | z 6 0}.

By definition,P1 andP2, are polyhedral sets, and, as noted previously, the outcome
setY= is a polyhedron. From (2), Corollary 19.3.2 in [49], and the definition of a
polyhedron, this implies thatY is a polyhedral set. Sincêy < Cx for all x ∈ X,
the interior ofY is nonempty. Therefore, dimY = p, and the proof is complete.2

A point y0 ∈ Y is called anefficient(or admissible) point of Y when noy ∈ Y

exists such thaty > y0 andy 6= y0. Wheny0 ∈ Y and noy ∈ Y exists such that
y > y0, theny0 is called aweakly efficient(or weakly admissible) point of Y . Let
YE andYWE denote the set of all efficient and weakly efficient points, respectively,
of Y .

THEOREM 2.1. Y=E = YE.
Proof. Suppose thaty ∈ Y=E . Then from (1),y = Cx for somex ∈ XE. By

definition of ŷ, this implies that̂y < y 6 Cx, so thaty ∈ Y .
Assume thaty /∈ YE. Then we may choose a pointy1 ∈ Y such thaty1 > y

andy1 6= y. Sincey1 ∈ Y , there exists a pointx1 ∈ X such thaty1 6 Cx1. The
latter two statements imply thatCx1 > y andCx1 6= y. Substituting fory, we
obtain thatCx1 > Cx andCx1 6= Cx. Sincex1 ∈ X, this contradicts thatx ∈ XE.
Therefore, the assumption thaty /∈ YE must be false, so thatY=E ⊆ YE.

Suppose thaty ∈ YE. To show thaty ∈ Y=E , we will show thaty = Cx for some
x ∈ XE. Towards this end, notice thaty ∈ Y , so thaty 6 Cx for somex ∈ X.
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Choose such anx, and assume that, in particular,y 6 Cx andy 6= Cx. Then, since
y ∈ Y andx ∈ X, y /∈ YE. But by assumption,y ∈ YE. This contradiction implies
that whenevery 6 Cx for somex ∈ X, y = Cx must hold.

Let x0 ∈ X satisfyy 6 Cx0. Then from the previous paragraph,y = Cx0. If
x0 /∈ XE were true, then for somex1 ∈ X, Cx1 > Cx0 = y with Cx1 6= y would
hold, which, from the previous paragraph, is impossible. Therefore,x0 ∈ XE. Since
y = Cx0, this implies by (1) thaty ∈ Y=E . Therefore,YE ⊆ Y=E and the theorem is
established. 2

Notice from Proposition 2.2. and Theorem 2.1. thatY is a nonempty, full-dimen-
sional compact polyhedron in<p whose efficient point set is precisely equal to
the set of all efficient points of the outcome setY= for problem (MOLP). We will
therefore refer toY as anefficiency-equivalent polyhedronfor Y=. The outer ap-
proximation algorithm to be presented will generate the entire efficiency-equivalent
polyhedronY for Y=. This will allow the user to immediately identify the set of all
efficient extreme points of the outcome setY= for problem (MOLP).

REMARK 2.1. A slightly-different form for an efficiency-equivalent polyhedron
from the one that we are using here can be found in [42, 43].

REMARK 2.2. Notice from Propositions 2.1. and 2.2. and from Theorem 2.1. that
even thoughY=E = YE, the dimension ofY= may be strictly less than dimY = p.

Let

β = max〈e, y〉, s.t. y ∈ Y,

wheree ∈ <p is the vector in which each entry is equal to 1.0. By Proposition 2.2.,
β is a finite number. Letv0 = ŷ and, for eachj = 1, 2, . . . , p, definevj ∈ <p by

v
j

i =
{

ŷi if i 6= j,

β + ŷj − 〈e, ŷ〉 if i = j,

i = 1, 2, . . . , p. In the outer approximation algorithm for problem (MOLP), an
initial simplex containingY is constructed. This construction is based upon the
following result.

THEOREM 2.2. The convex hullS of V (S) := {vj | j = 0, 1, . . . , p} is a
p-dimensional simplex with vertex setV (S), andS containsY .

Proof. Since ŷ < yAI 6 y for all y ∈ Y , β − 〈e, ŷ〉 > 0. For eachj =
1,2, . . . , p,

〈vj − v0〉i =
{

0 if i 6= j,

β − 〈e, ŷ〉 if i = j,
(3)
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i = 1, 2, . . . p. The latter two statements imply that{(vj − v0) | j = 1, 2, . . . , p}
is a linearly independent set. Hence,{v0, v1, . . . , vp} is an affinely independent
set, so that, by definition,S is ap-dimensional simplex with vertex setV (S).

To show thatS containsY , suppose first thaty ∈ Y . Then ŷ 6 y, so that
(y − ŷ) = (y − v0) > 0. Furthermore,

〈e, y − v0〉 6 max
y∈Y
〈e, y − v0〉

= max
y∈Y
〈e, y〉 − 〈e, v0〉

= β − 〈e, v0〉
= β − 〈e, ŷ〉, (4)

where the latter two equations follow from the definitions ofβ and ofv0, respec-
tively. Since(y − v0) > 0, (4) implies that for eachj = 1, 2, . . . , p,

06 (y − v0)j 6 β − 〈e, ŷ〉.
Therefore, we may choose scalarsαj , j = 1, 2, . . . , p, such that for eachj =
1, 2, . . . , p, 06 αj 6 1 and

(y − v0)j = αj(β − 〈e, ŷ〉).
From (3), this implies that

(y − v0) =
p∑

j=1

αj(v
j − v0). (5)

Notice that sinceαj > 0, j = 1,2, . . . , p,

p∑
j=1

αj > 0.

If
p∑

j=1

αj > 1

were true, then, using (3), (5), and this assumption, it would follow that

〈e, y − v0〉 =
p∑

j=1

αj 〈e, vj − v0〉

=
p∑

j=1

αj(β − 〈e, ŷ〉)

> β − 〈e, ŷ〉,

jogo452.tex; 30/06/1998; 12:37; p.8



AN OUTER APPROXIMATION ALGORITHM 9

which contradicts (4). Therefore, 06
∑p

j=1 αj 6 1 must hold. Furthermore, from
(5),

y =
1−

p∑
j=1

αj

 v0+
p∑

j=1

αj vj .

Since, for eachj = 1, 2, . . . , p, 0 6 αj 6 1, and 06
(
1−∑p

j=1 αj

)
6 1, this

means thaty is a convex combination of{vj | j = 0, 1, . . . , p}. Therefore,y ∈ S,
and we have shown thatY ⊆ S. 2

The outer approximation algorithm for problem (MOLP) will also make use of the
alternate representation of the simplexS given in the following theorem.

THEOREM 2.3. The simplexS defined in Theorem 2.2. may also be written

S = {y ∈ <p | ŷ 6 y, 〈e, y〉 6 β}.
Proof. Suppose thaty ∈ <p is contained in the convex hull of{vj | j =

0, 1, . . . , p}. Then we may choosep + 1 scalarsfj , j = 0, 1, 2, . . . , p, that sum
to 1.0 and satisfy 06 fj 6 1 for eachj = 0, 1, . . . , p, in such a way that

y =
p∑

j=0

fj vj .

As a result,

y =
1−

p∑
j=1

fj

 v0+
p∑

j=1

fj vj

= v0+
p∑

j=1

fj

(
vj − v0)

= ŷ + (
β − 〈e, ŷ〉) f, (6)

wheref ∈ <p has componentsfj , j = 1, 2, . . . , p, the first equality holds
becausef0, f1, . . . , fp sum to 1.0 and the third equality holds by the definitions
of v0, v1, . . . , vp. From the proof of Theorem 2.2.,β − 〈e, ŷ〉 > 0. This, together
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with (6) and the fact thatf > 0, implies thatŷ 6 y. Furthermore,

〈e, y〉 = 〈e, ŷ〉 +
p∑

j=1

fj

(
β − 〈e, ŷ〉)

=
1−

p∑
j=1

fj

 〈e, ŷ〉 + β

p∑
j=1

fj

= f0〈e, ŷ〉 + β

p∑
j=1

fj ,

where the first equality follows from (6) and the third equality holds because the
sum of f0, f1, . . . , fp is 1.0. Since〈e, ŷ〉 < β holds from the proof of Theo-
rem 2.2., this implies that

〈e, y〉 6 f0β + β

p∑
j=1

fj = β.

Therefore,y ∈ {y ∈ <p | ŷ 6 y, 〈e, y〉 6 β}.
Now suppose thaty ∈ {y ∈ <p | ŷ 6 y, 〈e, y〉 6 β}. For eachj = 1, 2, . . . , p,

let

αj = (y − v0)j

(β − 〈e, ŷ〉) ,

where, as shown previously,(β − 〈e, ŷ〉) > 0. Sinceŷ = v0 and〈e, y〉 6 β,

β − 〈e, ŷ〉 = β − 〈e, v0〉
> 〈e, y〉 − 〈e, v0〉
= 〈e, y − v0〉, (7)

so that for eachj = 1, 2, . . . , p, (y−v0)j 6 β−〈e, ŷ〉. Together with the facts that
y > ŷ = v0 and(β−〈e, ŷ〉) is positive, this implies that for eachj = 1, 2, . . . , p,
06 αj 6 1. Furthermore, by the definition ofαj , j = 1, 2, . . . , p,

p∑
j=1

αj =
∑p

j=1 (y − v0)j

β − 〈e, ŷ〉

= 〈e, y〉 − 〈e, v
0〉

β − 〈e, ŷ〉
6 1, (8)

where the inequality follows from (7) and the fact that(β − 〈e, ŷ〉) is positive.
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By the definitions ofvj , j = 0, 1, . . . , p, andαj , j = 1, 2, . . . , p,

v0+
p∑

j=1

αj(v
j − v0) = v0+

p∑
j=1

(y − v0)j

β − 〈e, ŷ〉 (vj − v0)

= v0+ (y − v0)

= y. (9)

Rearranging the left-hand side of (9), we obtain1−
p∑

j=1

αj

 v0+
p∑

j=1

αj vj = y.

From (8), since 06 αj 6 1, this implies thaty belongs to the convex hull of
{vj | j = 0, 1, . . . , p}. 2

From Proposition 2.2., we may choose a pointp ∈ int Y , where intY denotes
the interior ofY . Starting with the simplexS defined in Theorem 2.2., the outer
approximation algorithm will iteratively generate a finite number of nonempty,
compact, polyhedraSk, k = 0, 1, 2, . . . ,K, such thatS = S0 ⊃ S1 ⊃ · · · ⊃
SK−1 ⊃ SK = Y . In a typical iterationk, a vertexyk of Sk will be identified such
thatyk /∈ Y . Subsequently, the unique pointwk on the boundary ofY that lies on
the line segment connectingp andyk will be identified. The next result implies
that wk belongs toYWE. As we shall see, this fact will play an important role in
establishing the validity of the algorithm.

THEOREM 2.4. Let p ∈ int Y and suppose thaty > ŷ andy /∈ Y . Letw denote
the unique point on the boundary ofY that belongs to the line segment connecting
y andp. Thenw ∈ YWE.

Proof. Suppose, to the contrary, thatw /∈ YWE. Then we may choose a point
y0 ∈ Y such thaty0 > w. Sincey0 ∈ Y , we may also choose a pointx0 ∈ X such
thatCx0 > y0. Therefore,Cx0 > w.

By assumption,y /∈ Y andp ∈ int Y . SinceY is closed, and sincew belongs
to the boundary ofY and to the line segment connectingy andp, this implies that
w = λp + (1− λ)y for someλ that satisfies 0< λ < 1. By assumption,y > ŷ

and, sincep ∈ int Y, p > ŷ. From the previous two observations, it follows that
w > ŷ.

Chooseε > 0 such thatε < d1 andε < d2, where

d1 = min{(Cx0−w)j | j = 1, 2, . . . , p},
d2 = min{(w − ŷ)j | j = 1, 2, . . . , p}.

For anyv ∈ <p, let ‖v‖ denote the Euclidean norm ofv. Suppose thatz ∈ Nε(w),
whereNε(w) = {q ∈ <p | ‖q−w‖ < ε} is the open ball of radiusε centered atw.

jogo452.tex; 30/06/1998; 12:37; p.11



12 HAROLD P. BENSON

Then, for eachj = 1, 2, . . . , p,−ε < (zj −wj) < ε, which, upon rearrangement,
may be writtenwj − ε < zj < wj + ε. Sinceε < d1, ε < (Cx0)j −wj for each
j = 1, 2, . . . , p, and, sinceε < d2, −ε > ŷj − wj for eachj = 1, 2, . . . , p.
Combining the latter two statements, we conclude that for eachj = 1, 2, . . . , p,
ŷj < zj < (Cx0)j . Sincex0 ∈ X, this implies thatz ∈ Y . It follows that the open
ball Nε(w) is a subset ofY . Sinceε > 0, this contradicts the fact thatw belongs to
the boundary ofY , so that the proof is complete. 2

From Proposition 2.2. and [49],Y is ap-dimensional polyhedron with a finite
number of faces, and a setF ⊆ <p is a face of Yif and only if F equals the optimal
solution setY ∗(α) to the problem

(Pα) max〈α, y〉, s.t. y ∈ Y

for someα ∈ <p. Sinceŷ < Cx for all x ∈ X, by the definition ofY , this implies
thatp of the(p − 1)-dimensional faces ofY are given by the sets

Fj = {y ∈ Y | yj = ŷj },
j = 1, 2, . . . , p. It is well known that for eachj = 1, 2, . . . , p, eitherFj ⊆ YWE

or ri Fj ∩YWE = ∅, where riFj denotes the relative interior ofFj ; see, for instance,
[7]. For eachj = 1, 2, . . . , p, since ŷ ∈ Fj and ŷ /∈ YWE, this implies that
ri Fj∩YWE = ∅. As a result, the pointw in Theorem 2.4. lies in some faceF ⊆ YWE
of Y that satisfiesF 6= Fj for eachj = 1, 2, . . . , p. From [7], any such faceF is
precisely equal to the optimal solution setY ∗(α) of problem(Pα) for someα ∈ <p

such thatα > 0, α 6= 0. The following result provides a means for finding such a
faceF and representing it in this way.

THEOREM 2.5. Assume thatw ∈ YWE, and let (u∗T , v∗T ) denote any optimal
solution for the dual linear program to the problem

(Qw) max t,

s.t. Cz− et> w, (10)

Az = b, (11)

z, t > 0,

whereu∗ ∈ <p andv∗ ∈ <m correspond to constraints (10) and (11), respectively,
of problem(Qw). Thenu∗ > 0, u∗ 6= 0, andw belongs to the weakly efficient face
Y ∗(u∗) of Y . Furthermore,Y ∗(u∗) is given by

Y ∗(u∗) = {y ∈ Y | 〈u∗, y〉 = 〈b, v∗〉}.
Proof. Let Y6 = {y ∈ <p | y 6 Cx for somex ∈ X}. For eachy ∈ Y6,

let g(y) denote the optimal value of problem(Qw) with w = y. Then, sincew ∈
Y, g(w) > 0. In fact, sincew ∈ YWE, it is easy to see thatg(w) = 0. Therefore, by
duality theory of linear programming, the dual linear program to problem(Qw),
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which is given by

(QDw) min − 〈w,u〉 + 〈b, v〉,
s.t. − uT C + vT A > 0,

〈e, u〉 > 1,

u > 0,

also has an optimal value ofg(w) = 0.
Let (u∗T , v∗T ) denote any optimal solution to problem(QDw). Then, from the

constraints of problem(QDw), it follows thatu∗ > 0, u∗ 6= 0. Furthermore, since
the optimal value of problem(QDw) equals 0,

〈w,u∗〉 = 〈b, v∗〉. (12)

Sinceu∗ > 0 andu∗ 6= 0, from [7] we know that the optimal solution setY ∗(u∗)
for problem(Pu∗) corresponds to a weakly efficient face ofY . From this and (12), it
follows that if we show thatw is an optimal solution to problem(Pu∗), the theorem
will be established.

To show thatw is an optimal solution to problem(Pu∗), notice first that by the
definition ofY , this problem can also be written

(Pu∗) max 〈u∗, y〉
s.t. − y 6 −ŷ,

y − Cz 6 0,

Az = b,

z > 0.

Until we indicate otherwise in this proof, we will use the latter representation of
problem(Pu∗). The dual linear program to problem(Pu∗) is given by

(Du∗) min − 〈ŷ, s〉 + 〈b, q〉,
s.t. − sT + rT = u∗T ,

− rT C + qT A > 0,

s, r > 0.

Notice that since(u∗T , v∗T ) is an optimal solution to problem(QDw), the vec-
tor (sT , rT , qT ) = (0T , u∗T , v∗T ) is feasible in problem(Du∗) and has objective
function value〈b, v∗〉 there.

Let (z∗T , t∗) be an optimal solution for problem(Qw). Sinceg(w) = 0, this
implies thatt∗ = 0, Cz∗ > w, Az∗ = b, andz∗ > 0. Together with the fact that
w > ŷ, this implies that(yT , zT ) = (wT , z∗T ) is a feasible solution for problem
(Pu∗) with an objective function value equal to〈u∗, w〉. From (12),〈u∗, w〉 =
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14 HAROLD P. BENSON

〈b, v∗〉. Since(0T , u∗T , v∗T ) is a feasible solution for problem(Du∗) with objective
function value〈b, v∗〉, this implies by duality theory of linear programming that
(yT , zT ) = (wT , z∗T ) is an optimal solution to problem(Pu∗). Therefore,w is an
optimal solution to the representation of problem(Pu∗) given by

(Pu∗) max〈u∗, y〉, s.t. y ∈ Y. 2

Theorem 2.5. will provide the basis for constructing certain linear inequality
cuts needed in the Outer Approximation Algorithm for problem (MOLP) to be
presented in the next section.

3. The outer approximation algorithm

The Outer Approximation Algorithm presented below uses results from Section 2
and the idea of outer approximation to generate the entire efficiency-equivalent
polyhedronY for the outcome setY= of problem (MOLP). As we shall soon
see, this will allow the set of all efficient extreme points inY= to be immediately
identified.

Outer approximation algorithm

Initialization step. Compute a pointp ∈ int Y and construct thep-dimensional
simplexS0 = S containingY described in Theorems 2.2. and 2.3.. Store both the
vertex setV (S0) of S0 = S given in Theorem 2.2. and the inequality representation
of S0 = S given in Theorem 2.3.. Setk = 0 and go to iterationk.

Iteration k, k > 0. See Stepsk1 throughk4 below.

Stepk1. If, for eachy ∈ V (Sk), y ∈ Y is satisfied, then stop:Y = Sk. Otherwise,
choose anyyk ∈ V (Sk) such thatyk /∈ Y and continue.

Stepk2. Find the unique valueλk of λ, 0 < λ < 1, such thatλyk + (1− λ)p

belongs to the boundary ofY , and setwk = λk yk + (1− λk)p.
Stepk3. Set Sk+1 = Sk ∩ {y ∈ <p | 〈uk, y〉 6 〈b, vk〉}, where(ukT

, vkT

) is
any dual optimal solution to the linear program(Qw) with w = wk (cf.
Theorem 2.5.).

Stepk4. UsingV (Sk) and the definition ofSk+1 given in Stepk3, determineV (Sk+1).
Setk = k + 1 and go to iterationk.

For eachk > 0, the inequality

〈uk, y〉 6 〈b, vk〉
appended toSk in Stepk3 is called aninequality cut[47, 48]. As we shall see, each
such inequality is constructed so thatSk+1 “cuts off” a portion ofSk containingyk

in such a way thatSk ⊃ Sk+1 ⊃ Y .
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Notice that except for Stepsk2 andk4, the Outer Approximation Algorithm can
be implemented by using linear programming techniques. For instance, to compute
p ∈ int Y in the Initialization Step,p may be set equal to any strict convex combi-
nation ofyAI andCz∗, where(z∗T , t∗) is any optimal solution to the linear program
(Qw) given in Section 2 withw = yAI . In Stepk1, to test a given pointy ∈ V (Sk)

for membership inY , one may apply the Phase 1 procedure of the simplex method
to problem(Qw) with w = y. It is easy to show that the other steps, apart from
Stepsk2 andk4, can be implemented by using linear programming as well.

Stepk2 can be executed by applying linear programming and standard univari-
ate search techniques. In particular,λk in Stepk2 can be found by using univariate
search techniques to determine the largest value ofλ, 0 < λ < 1, such that the
linear program(Qw) is feasible withw = λyk + (1− λ)p. The feasibility of this
linear program can be determined, for instance, via the Phase 1 procedure of the
simplex method.

The execution of Stepk4 can be accomplished via one of several special tech-
niques from the global optimization literature; see, for instance, [51–56] and a
review by Horst [57]. We expect from evidence in the global optimization literature
that as the dimensionp of the polyhedraSk, k = 0, 1, 2, . . . , increases, executing
Stepk4 will, in general, become a computationally-demanding task. However, for
cases wherep 6 20, any of the methods given in [51–56] can be expected to be
relatively efficient; see, for instance, [46, 58]. Fortunately, in practice, the number
of objective functionsp in problem (MOLP) is almost invariably less than 20; see,
e.g. [3, 6, 59].

Notice also that, in contrast to many decision set-based approaches for problem
(MOLP), the Outer Approximation Algorithm avoids the need for complicated
bookkeeping or backtracking [6, 12, 29].

THEOREM 3.1. The Outer Approximation Algorithm is finite and, when it termi-
nates,SK = Y , whereK > 0 is the final iteration number.

Proof.From Theorem 2.2., the initial simplexS = S0 of the algorithm contains
Y . Suppose thatk > 0 and thatSk ⊇ Y but Sk 6= Y . Then in Stepk1 of the
algorithm, an elementyk of V (Sk) will be found such thatyk /∈ Y . By Theorem 2.3.
and Stepk3 of the algorithm, for any pointy ∈ Sk, y > ŷ must hold. Sinceyk ∈ Sk,
this implies thatyk > ŷ. By Theorem 2.4. and Stepk2, sincep ∈ int Y and
yk /∈ Y , wk ∈ YWE. From Theorem 2.5. and Stepk3, {y ∈ Y | 〈uk, y〉 = 〈b, vk〉}
is a weakly efficient face ofY containingwk. Sincep ∈ int Y , this implies that
〈uk, p〉 6= 〈b, vk〉. In addition, from Theorem 2.5,〈uk, y〉 6 〈b, vk〉 for all y ∈ Y .
Therefore〈uk, p〉 < 〈b, vk〉. Since〈uk,wk〉 = 〈b, vk〉, by Stepk2 of the algorithm,
this implies that〈uk, yk〉 > 〈b, vk〉. Therefore, by the definition ofSk+1 in Stepk3,
yk /∈ Sk+1. On the other hand, sinceSk ⊇ Y and〈uk, y〉 6 〈b, vk〉 for all y ∈ Y ,
Sk+1 ⊇ Y . By the choice ofk, we conclude that the algorithm generatesdistinct
polyhedraSk, k = 0, 1, 2, . . . , such that

S0 ⊃ S1 ⊃ · · · ⊃ Sk ⊃ Y.
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16 HAROLD P. BENSON

Furthermore, for eachk > 0, from Stepk3,

Sk+1 = Sk ∩ {y ∈ <p | 〈uk, y〉 6 〈b, vk〉},
where{y ∈ Y | 〈uk, y〉 = 〈b, vk〉} is a face ofY . By Proposition 2.2., this implies
that the algorithm must be finite and it must terminate in some iterationK > 0
with SK = Y . 2

When the algorithm terminates, the set of all efficient extreme points in the
outcome setY= for problem (MOLP) can be easily found by using the next result.

THEOREM 3.2. Let K > 0 denote the iteration number in whichSK = Y and
the Outer Approximation Algorithm terminates. Let

E = {y ∈ V (SK) | y > ŷ}.
ThenE is identical to the set of all efficient extreme points ofY=.

Proof. From Theorems 2.3.–2.5. and 3.1., and from Stepk3 of the Outer Ap-
proximation Algorithm,

SK = Y

= {y ∈ <p | ŷ 6 y, 〈e, y〉 6 β} ∩
(

K−1⋂
i=0

Hi

)
,

where, for eachi = 0, 1, 2, . . . ,K − 1,

Hi = {y ∈ <p | 〈ui, y〉 6 〈b, vi〉},
and{y ∈ Y | 〈ui, y〉 = 〈b, vi〉} ⊆ YWE. Notice also that sincee > 0, the definition
of β implies that{y ∈ Y | 〈e, y〉 = β} ⊆ YWE.

Suppose thatv ∈ E. Thenv ∈ V (SK) = V (Y ) andv > ŷ. Therefore, at leastp
of the inequalities

〈e, y〉 6 β

〈ui, y〉 6 〈b, vi〉, i = 0, 1, . . . ,K − 1,

must hold as equations aty = v. This implies thatv ∈ YWE.
To show thatv ∈ YE, we will use a proof by contradiction. Towards this end,

suppose thatv /∈ YE. Then we may choosey ∈ Y such thaty > v andy 6= v.
Sincev ∈ YWE, y 6> v. Let

I1 = {i ∈ {1, 2, . . . , p} | yi = vi}
and

I2 = {i ∈ {1, 2, . . . , p} | yi > vi}.
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AN OUTER APPROXIMATION ALGORITHM 17

ThenI1, I2 6= ∅ andI1∪ I2 = {1, 2, . . . , p}. For eachi ∈ I2, let ni = yi − vi > 0.
ChooseM > 0 sufficiently large so that for eachi ∈ I2, vi − ni/M > ŷi , and
definev ∈ <p by

vi =
{

vi, i ∈ I1

vi − ni

M
, i ∈ I2.

Then, by the choice ofM, sincev ∈ Y, v ∈ Y . Also, sinceI2 6= ∅, v 6= v.
Notice that

yi =
{

vi, i ∈ I1

vi + ni, i ∈ I2,

so that

v = 1

M + 1
y + M

M + 1
v.

Since 0< [1/(M + 1)] < 1, this implies thatv is a strict convex combination ofy
andv. On the other hand,v is an extreme point ofY , andy, v ∈ Y , wherey 6= v

andv 6= v, which is a contradiction. Therefore,v ∈ YE must hold.
From Theorem 2.1., sincev ∈ YE, v ∈ Y=E . Thereforev ∈ Y=. Sincev ∈

V (SK) = V (Y ) andY= ⊆ Y , this implies thatv is an extreme point ofY=. Thus,
v is an efficient extreme point ofY=. By the choice ofv, we have shown thatE is
a subset of the set of efficient extreme points ofY=.

Now suppose thatv is an efficient extreme point ofY=. Then, sincev ∈ Y=,
v > yAI . SinceyAI > ŷ, this implies thatv > ŷ. Thus, to complete the proof, we
need only to show thatv ∈ V (SK).

Towards this end, assume, to the contrary, thatv /∈ V (SK). Then, sinceSK = Y ,
v /∈ V (Y ). Therefore, we may choosez1, z2 ∈ Y andθ ∈ < such thatz1 6= v, z2 6=
v, 0 < θ < 1, and

v = θ z1+ (1− θ)z2. (13)

From Theorem 3.1. in [60], sincev is an efficient extreme point of the polyhe-
dronY=, we may select a pointu ∈ <p, u > 0, such thatv is the unique optimal
solution to the problem

max〈u, y〉, s.t. y ∈ Y=.

From the definition ofY , this implies thatv is also the unique optimal solution to
the problem(Pα), defined in Section 2, withα = u. Therefore, sincez1, z2 ∈ Y ,

〈u, z1〉 < 〈u, v〉
and

〈u, z2〉 < 〈u, v〉
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18 HAROLD P. BENSON

must hold. Since 0< θ < 1, these inequalities imply that

θ〈u, z1〉 + (1− θ)〈u, z2〉 < 〈u, v〉.
From (13), the left-hand-side of the previous inequality equals〈u, v〉, yielding a
contradiction. Therefore,v ∈ V (SK) must be true. 2

Notice that in the Outer Approximation Algorithm, each of the setsV (Sk), k =
0, 1, 2, . . . ,K, is explicitly computed. From Theorem 3.2., this implies that the set
E of all efficient extreme points in the outcome setY= is essentially immediately
available upon termination of the algorithm.

REMARK 3.1. It can also be shown that when the Outer Approximation Algo-
rithm terminates, the weakly efficient outcome setY=WE is given by

Y=WE =
K−1⋃
i=0

{y ∈ <p | y = Cx for somex ∈ X and〈ui, y〉 = 〈b, vi〉},

whereK is the iteration in which the algorithm terminates. As a result,Y=WE can be
recovered from the optimal solution setsW ∗i of the linear programming problems

max 〈ui, y〉,
s.t. y −Cx = 0,

Ax = b,

x > 0,

i = 0, 1, 2, . . . ,K − 1.

4. Computational experiments

In order to perform some preliminary computational experiments, we have written
a prototype VS-FORTRAN code capable of executing the Outer Approximation
Algorithm on moderately-small instances of problem (MOLP). We then applied
this code to 30 randomly-generated problems.

The code implements Stepk4 of the Outer Approximation Algorithm by the
Horst–Thoai–DeVries method [54]. The univariate searches in Stepk2 are accom-
plished by simple bisection search, and linear programming tasks are performed
using the simplex method as implemented by the subroutines of IMSL [61].

To construct the data for thep×n matrixC, them×n matrixA, and the vector
b ∈ <m required for each of the 30 instances of problem (MOLP), pseudoran-
dom numbers from uniform distributions were used. The experimental runs were
performed on an ES/9000 model 831 computer.

Some statistics summarizing the results of these computational experiments are
displayed in Tables 1 and 2. In Table 1, for each problem, the columnK contains
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AN OUTER APPROXIMATION ALGORITHM 19

Table 1. Computational results for individual problems.

Problem m n p K |E| CPU time (seconds)

1 4 11 3 10 12 1.65

2 4 11 3 16 16 2.10

3 4 11 3 19 28 2.84

4 4 11 3 13 11 2.14

5 4 11 3 3 1 0.93

6 5 10 3 8 5 1.41

7 5 10 3 7 3 1.52

8 5 10 3 11 8 2.36

9 5 10 3 12 6 2.03

10 5 10 3 16 17 2.91

11 5 10 2 4 3 1.02

12 5 10 2 4 3 1.04

13 5 10 2 5 4 1.12

14 5 10 2 5 4 1.05

15 5 10 2 8 7 1.31

16 10 15 2 6 5 1.88

17 10 15 2 3 2 1.36

18 10 15 2 3 2 1.29

19 10 15 2 7 6 1.99

20 10 15 2 4 3 1.60

21 10 15 3 3 1 1.41

22 10 15 3 25 48 7.53

23 10 15 3 17 22 5.83

24 10 15 3 22 30 7.57

25 10 15 3 5 5 1.75

26 15 20 3 23 23 13.90

27 15 20 3 35 54 24.40

28 15 20 3 6 5 3.48

29 15 20 3 16 14 8.39

30 15 20 3 29 38 16.17

the iteration number in which the Outer Approximation Algorithm terminated, and
the column|E| contains the total number of extreme points in the efficient outcome
set. Recall from Section 3 thatK − 1 equals the total number of inequality cuts
added by the algorithm to the initial simplexS = S0 to createY . In Table 2, the 30
problems are grouped by problem size into six groups of five problems each. For
each group, by using Table 1, we computed the average number of efficient extreme
points contained in the outcome set. These numbers are given in the last column of
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Table 2. Comparative statistics for domain and outcome sets.

Problem size Average no. of efficient points

m n p In domain set In outcome set

4 11 3 17.8 13.6

5 10 3 20.0 7.8

5 10 2 9.0 4.2

10 15 2 13.6 3.6

10 15 3 108.4 21.2

15 20 3 261.4 26.8

Table 2. For comparison purposes, for each problem size, the column immediately
to the left of the last column contains the average number of efficient extreme points
contained in the domain set for a group of five similarly-generated problems. We
computed these averages with the aid of the domain set-based algorithm ADBASE
[33].

Notice from Table 1 that for all but one of the 30 problems, the Outer Ap-
proximation Algorithm required fewer than 30 iterations. In addition, the number
|E| of efficient extreme points in the outcome sets of these problems is always
less than 55. As expected, asp,m or n increases, both|E| and the number of
iterationsK also increase, although Table 1 does not give sufficient evidence to
draw conclusions as to the relative influences of the sizes ofp,m andn on |E| or
K.

Table 2 clearly shows for these 30 problems that over all problem sizes con-
sidered, the average number of efficient extreme points in the outcome set is less
than the average number of efficient extreme points in the decision set, often con-
siderably so. In addition, from this table, we see that in these 30 problems, as
the problem size increases, the ratio of the number of efficient extreme points in
the outcome set to the number in the decision set decreases quite rapidly. As a
result, while the average number of efficient extreme points in the domain sets of
the problems withm = 15, n = 20 andp = 3 grows to 261.4, which is large
enough to possibly overwhelm the decision maker, the corresponding average in
the outcome set reaches only 26.8.

5. Conclusions

We have seen that decision set-based vector maximization approaches for problem
(MOLP) are limited by problem size. In particular, as the size of problem (MOLP)
grows, the sizes of both the efficient decision setXE of this problem and the set of
extreme points inXE grow quite rapidly. As a result, generating all ofXE or the
set of all extreme points inXE and presenting the results to the DM can quickly
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become unworkable as the size of problem (MOLP) grows. This is because either
the computations required to generate these sets become impractical, or the results
are not useful to the decision maker because he or she is overwhelmed by them.

To attempt to mitigate the effects of problem size, we have presented a finite
algorithm, called the Outer Approximation Algorithm, for generating the set of
all efficient extreme points in the outcome set, rather than in the decision set, of
problem (MOLP). We have seen that solid motivations in theory and in practice
have been given in the literature for believing that outcome set-based approaches,
if carefully developed, should be superior to decision set-based approaches.

The Outer Approximation Algorithm can be implemented relatively easily by
using univariate search methods, linear programming techniques, and any one of
several special methods from the global optimization literature for generating new
vertex sets as linear inequality cuts are added to the containing polyhedra generated
by the algorithm. Furthermore, the Outer Approximation Algorithm does not call
for the use of any of the special accounting or backtracking procedures required
by many decision set-based approaches. Finally, since the number of objective
functions in problem (MOLP) is almost always less than 20, the global optimiza-
tion literature gives reason to believe that the outer approximation portion of the
algorithm should work efficiently.

Preliminary computational experiments that we have performed using a pro-
totype computer code that executes the Outer Approximation Algorithm demon-
strate, for 30 problems, the practicality of the algorithm. Those experiments also
tangibly demonstrate the usefulness in these 30 problems of using the outcome set
approach of the Outer Approximation Algorithm instead of a decision set-based
approach. In particular, in the larger problems, considerably fewer efficient extreme
points were found, on the average, in the outcome sets than in the decision sets.

As a result, we conclude that the Outer Approximation Algorithm offers sig-
nificant promise for solving applications of problem (MOLP) more easily than
decision set-based methods, and without overwhelming the decision maker. In
addition, these results indicate that the Outer Approximation Algorithm offers
promise for solving larger instances of problem (MOLP) than can presently be
solved by decision set-based vector maximization algorithms.
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