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Abstract. Various difficulties have been encountered in using decision set-based vector maximiza-
tion methods to solve a multiple objective linear programming problem (MOLP). Motivated by these
difficulties, some researchers in recent years have suggested that outcome set-based approaches
should instead be developed and used to solve problem (MOLP). In this article, we present a fi-
nite algorithm, called the Outer Approximation Algorithm, for generating the set of all efficient
extreme points in the outcome set of problem (MOLP). To our knowledge, the Outer Approximation
Algorithm is the first algorithm capable of generating this set. As a by-product, the algorithm also
generates the weakly efficient outcome set of problem (MOLP). Because it works in the outcome set
rather than in the decision set of problem (MOLP), the Outer Approximation Algorithm has several
advantages over decision set-based algorithms. It is also relatively easy to implement. Preliminary
computational results for a set of randomly-generated problems are reported. These results tangibly
demonstrate the usefulness of using the outcome set approach of the Outer Approximation Algorithm
instead of a decision set-based approach.

Key words: Efficient set, Global optimization, Multiple objective linear programming, Outer ap-
proximation, Vector maximization

1. Introduction and motivation

In a multiple objective mathematical programming problem (P), the goal is to
simultaneously maximize > 2 noncomparable objective functions over a non-
empty feasible regiorX in %i". To help the decision maker (DM) find a most
preferred solution to problem (P), researchers have shown that one can generally
restrict one’s attention to the subset of feasible solutions calleaffiaent (or
nondominatejldecision setMotivated by this result, researchers have developed

a variety of methods for generating all, or at least some, of the efficient decision
set for the DM to examine. The hope is that the DM will thereby be able to de-
tect inherent tradeoffs among the objective functions and choose a most preferred
solution. Included among these approaches argghtor maximizatiompproach,
interactiveapproaches, and several others; see, e.g., the books and survey papers
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by Cohon [1], Evans [2], Goicoechea et al. [3], Luc [4], Sawaragi et al. [5], Steuer
[6], Yu [7], and Zeleny [8] and references therein.

The vector maximization concept dates from the 1950s [9], but the approach
was not explored in earnest until almost 20 years later [10-13]. The goal in the
vector maximization approach is to generate either all of the efficient decision set,
or a representative portion thereof, without any input from the DM. Subsequently,
the entire set generated is presented to the DM who, without further aid from the
analyst, seeks a most preferred solution from it.

In practice, the vector maximization approach has had some success in aiding
the DM to solve problem (P), but this success has been relatively limited. The
primary reason for this is that the efficient decision set of problem (P) is generally a
complicated, nonconvex set that grows rapidly as the size of the problem increases.
Consequently, generating this set in its entirety is possible only in certain special
cases; see, e.g., Yu and Zeleny [13], Benson [14], Isermann [15], Bitran [16],
Villarreal and Karwan [17], and Kostreva and Wiecek [18]. Even in these special
cases, the computational effort required to generate all of the efficient decision
set becomes rapidly unmanageable and seems to grow exponentially with problem
size; see, for instance, Steuer [6], Evans and Steuer [12], and Marcotte and Soland
[19]. Furthermore, the sheer size of the efficient decision set often becomes so huge
that it either becomes too difficult to describe to the DM in a meaningful way or
it can overwhelm the DM to the extent that he or she is not able to choose a most
preferred solution from it [20].

When X is a polyhedral set and the objective functions of problem (P) are
linear functions(c;, x), i = 1,2, ..., p, wherec; € %" for eachi, then problem
(P) is called amultiple objective linear programming problerfihe problem may
then be written

(MOLP) VMAX : Cx, stxeX,

where(C is the p x n matrix whoseith row contains the vectar; for eachi =
1,2,..., p. Problem (MOLP) is one of the simpler and more common cases of
the multiple objective mathematical programming problem (P). It has been studied
in literally hundreds of articles, chapters in books, and books; see, e.g., Armand
[23], Armand and Malivert [24], Benson [21, 25, 26], Benson and Aksoy [27],
Ecker and Kouada [28], Ecker et al. [29], Gal [30], Zeleny [31], also [1-8, 11-13,
15, 20] and references therein. Nevertheless, vector maximization approaches for
problem (MOLP) have also had only limited success.

In the case of problem (MOLP), the efficient decision Xgt consists of a
union of faces ofX. While X is also always a connected set, generally, it is
a complicated nonconvex subset of the boundarx db, 7, 21, 22]. The vec-
tor maximization methods for problem (MOLP) fall into two classes. One class
consists of methods that generate the entire efficient decisiok sef problem
(MOLP), while the second class consists of methods for generating only the set of
all extreme points oX that belong taX .
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Some of the most well-known algorithms for generating alkgfcan be found
in [6, 7, 13, 15, 22—24, 29-31]. These algorithms employ various search schemes
to iteratively identify and test faces &f for efficiency. Regardless of the schemes
used, these methods have met with only limited success in practice. There are at
least two reasons for this.

First, the computational demands of finding allXof grow rapidly with prob-
lem size, so that mathematically only relatively-small problems can be analyzed;
see, e.g., Benson and Sayin [32] and [6, 22]. Second, the sheer size and nature
of X have so far precluded the possibility of finding a concrete, useful way of
presenting it in its entirety to the DM without overwhelming him or her; see, e.qg.,
[20, 22, 32].

Let Xex denote the set of all extreme points Xf The second class of vector
maximization methods for problem (MOLP) consists of algorithms for generating
all of Xz N Xey, that is, all of the efficient extreme points in the decision et
Representative algorithms of this type can be found in Steuer [33] and in [2, 3, 6-8,
11-13, 28, 31]. The rationale for this approach is that siXigen Xex is a finite,
discrete set that is smaller than all &fz, it ought to be more computationally
practical to generate it and to present it to the DM without overwhelming him or
her thanX.

Unfortunately, in practice, methods for problem (MOLP) that seek to generate
X N Xex have also achieved only limited success. There are at least two major
reasons for this.

First, althoughX r N Xex is smaller thanX g, it was soon found that the number
of elements inX; N Xex generally grows exponentially with problem size. As a
result, as the size of problem (MOLP) grows; N Xex, like Xz, can quickly
become computationally burdensome to generate, and its sheer size can easily
overwhelm the DM [6, 34-38]. For example, we used the ADBASE algorithm
of Steuer [33] on randomly-generated problems with four objective functions. We
found that whem = 30 andX is described by 25 linear inequalities, the average
number of efficient extreme points X in a set of 10 randomly-generated prob-
lems was 7245.90. When we increasetb 50 andX was described by 50 linear
inequalities, this average jumped to, 88060 points. Withn = 60 and with 50
linear inequalities describing, each of the 10 random problems that we generated
exceeded the solution capacity of ADBASE, indicating that the number of efficient
extreme points in each of these problems exceededl®00

Second, most algorithms for generatifig N Xex require some sort of extra
bookkeeping or backtracking schemes that are not necessarily required to generate
all of Xz. These schemes make implementations of these methods more involved
and slower [6, 12, 21, 22].

Motivated, in part, by these difficulties, a handful of researchers in recent years
has begun to turn their attention to the mathematics and tools for generating all or
portions of theefficient outcome sét;, rather than the efficient decision set, for

jogod52.tex; 30/06/1998; 12:37; p.3



4 HAROLD P. BENSON
problem (MOLP), where
Y7 ={Cx |x € Xg); )

see, for instance, [32, 34, 35, 39—44]. There are at least three reasons for this.

First, Y invariably has a much simpler structure and smaller size ¥arsee,
e.g., [34, 35, 39-44]. This is, in part, becaugg € R” and Xy < N", where
p is typically much smaller tham, often by factors of 10, 100 or more. As a
result, generating all or portions 8f is expected, in general, to be less demanding
computationally than generating all or portionsXof. In addition, the probability
of overwhelming the DM by generating all or portionsgf is expected to be less
than if X or portions ofX z were generated.

Second, it has been shown that, in practice, the DM prefers basing his or her
choice of a most preferred solution primarily &, rather thanX z. For instance,
arguments to this effect are given in [32, 34, 35].

Third, it is well known that frequently many points iy are mapped by
onto either a single point ifi; or onto essentially-equivalent outcomes'ify; see,
for instance, [39, 40, 45]. Thus, generating points directly figmavoids risking
redundant calculations of points froX; that would be of little or no use to the
DM.

Recently some researchers have suggested that to more efficiently generate parts
or all of Y (or Xg), tools from theglobal optimizationliterature might be useful,
see, e.9., [32, 46—48]. This suggestion is motivated by the fact that these tools are
suited, among other things, to exploring complicated nonconvex sets.

In this article, we present and validate a new algorithm, called the Outer Ap-
proximation Algorithm, for generating the set of all extreme point$ pf that is,
the set of all efficient extreme points in the outcome set for problem (MOLP). The
algorithm, to our knowledge, is the first algorithm capable of generating this set.
It uses a technique called outer approximation. This technique has been used suc-
cessfully to help solve various single-objective optimization problems, including
global optimization problems. The Outer Approximation Algorithm is shown to
be finite. As a by-product, the algorithm also generates the entire weakly efficient
outcome set of problem (MOLP).

The article is organized as follows. In the next section, theoretical prerequisites
for presenting and analyzing the Outer Approximation Algorithm are given. In
Section 3, the algorithm is presented and shown to generate the set of all efficient
extreme points in the outcome set of problem (MOLP) after a finite humber of
iterations. The results of some preliminary computational experiments with a pro-
totype VS-FORTRAN code that we have written that implements the algorithm are
given and briefly analyzed in Section 4. In Section 5 we conclude that the Outer
Approximation Algorithm offers significant promise of allowing decision makers
to more easily solve practical applications of problem (MOLP) and to solve larger
instances of problem (MOLP) than can presently be solved by decision set-based
vector maximization algorithms.
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AN OUTER APPROXIMATION ALGORITHM 5

2. Theoretical prerequisites

We will assume henceforth that in problem (MOLR),is a nonempty, compact
polyhedron given by

X={xeN|Ax=b, x >0},

whereA is anm x n matrix andb € R". We will also assume in problem (MOLP)
that the rank ofC equalsg, whereg > 1. LetY= be defined by

Y=={Cx | x € X}.

The setY= is called theoutcome setor problem (MOLP); see, for instance, [32,
34, 35, 39, 40]. Notice that € Y= iff y = Cx for somex € X. Other studies [7,
32, 35, 39] have used the st = {y € ) | y < Cx for somex e X} to good
effect as well. We shall not focus, however, bR here. A pointx® e %" is called
an efficient (or nondominatej solution for problem (MOLP) whenx® ¢ X and
there exists no point € X such thatCx > Cx° andCx # Cx°. Similarly, a point
yO e N7 is called anefficient(or nondominatejl outcomefor problem (MOLP)
wheny® e Y= and there exists n@ € Y= such thaty > y° andy # y° [7,
32, 39]. The set of all efficient solutions and the set of all efficient outcomes for
problem (MOLP) are called thefficient decision setnd theefficient outcome set
respectively, for problem (MOLP) and are denotéd and Y, respectively (cf.
Section 1). It is an easy exercise to show tHatmay be equivalently defined by
Equation (1) in Section 1; see, for instance, [50].

A pointx € 0" is called aweakly efficien{or weakly nondominatgdsolution
for problem (MOLP) wherx € X and there exists ne € X such thatCx > Cx.
Similarly, a pointy € R? is called aweakly efficien{or weakly nondominatgd
outcomefor problem (MOLP) whery € Y= and there exists ng € Y= such that
y > y. Theweakly efficient decision sédye and theweakly efficient outcome set
Y\ye are defined similarly t&(; andY;. It is easy to show thal,z may also be
defined by the equation

Ywe = {Cx | x € Xwe}.

It can be shown that the outcome ¥étis a nonempty, compact polyhedromi;
see, e.g., [49]. We will have some interest in the dimensiariin this article. In
this regard, we will find the following result useful. For any convexzdet dimZ
denote the dimension &f.

PROPOSITION 2.1.The dimension of* satisfiesdimY =<q.

Proof. Let R(C) ={Cx|x € %"} denote the range df, and let NC) = {z €
MP|CTz = 0} denote the null space @’ . Then, from elementary linear algebra,
the sum of dimR(C) and dimN(') equalsp. Furthermore, since the rank Gf
equalsg, dimN(C”) = p-g. The latter two statements imply the dimR(C)g=
Becauser= is a subset of R(C), this implies that difn < g. O
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6 HAROLD P. BENSON
Foreach =1,2,..., p,let
yM =miny;, stye Y=

The vectory?! € )7 is called theanti-ideal outcomédor problem (MOLP). Notice
that sinceX is nonempty and compact, the components‘dfare all finite.
Let § € 7 satisfyy < y4/, and consider the sé&t given by

Y={yeNR’ |y <y<Cxforsomex € X}.

The setY is instrumental in the algorithm to be presented in Section 3 for reasons
that will become clear shortly.

PROPOSITION 2.2.The setY is a nonempty, bounded polyhedronditi of di-
mensionp.

Proof. Sincey < y4! < Cx for all x € X, whereX is nonempty and bounded,
the definition ofY implies thatY is a nonempty, bounded setfit?. Notice thatY
may be written

Y = PPN~ + Py, (2)
where
PL={yeR’|y>y}

and
P, = {zeN? | z< 0}

By definition, P; and P,, are polyhedral sets, and, as noted previously, the outcome
setY= is a polyhedron. From (2), Corollary 19.3.2 in [49], and the definition of a
polyhedron, this implies that is a polyhedral set. Sincg < Cx for all x € X,

the interior ofY is nonempty. Therefore, dih= p, and the proof is completen

A point y° € Y is called arefficient(or admissibl¢ point of ¥ when noy € Y
exists such thap > y® andy # y°. Wheny® € Y and noy e Y exists such that
y > y°, theny? is called aweakly efficien{or weakly admissibjepoint of Y. Let
Yy andYwe denote the set of all efficient and weakly efficient points, respectively,
of Y.

THEOREM 2.1. Yz = Y.

Proof. Suppose thay € Y. Then from (1),y = Cx for somex € Xg. By
definition of y, this implies that) < y < Cx, sothaty e Y.

Assume thaty ¢ Yz. Then we may choose a poipt € Y such thaty! > y
andy! #£ y. Sincey! € Y, there exists a point’ € X such thaty® < Cx!. The
latter two statements imply thax® > y andCx® # y. Substituting fory, we
obtain thatCx! > Cx andCx! # Cx. Sincex! € X, this contradicts that € X .
Therefore, the assumption thag Yr must be false, so that; < V.

Suppose that € Y. To show that € Y, we will show thaty = Cx for some
x € Xg. Towards this end, notice thate Y, so thaty < Cx for somex € X.
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Choose such an, and assume that, in particular< Cx andy # Cx. Then, since
y e Yandx € X,y ¢ Y. But by assumptiony € Yg. This contradiction implies
that whenevey < Cx for somex € X, y = Cx must hold.

Letx° e X satisfyy < Cx°. Then from the previous paragraph= Cx°. If
x% ¢ Xy were true, then for some' € X, Cx! > Cx® = y with Cx! # y would
hold, which, from the previous paragraph, is impossible. Theref8re, X ;. Since
y = Cx°, this implies by (1) thay € Y. Therefore,Y; C Y and the theorem is
established. |

Notice from Proposition 2.2. and Theorem 2.1. thias a nonempty, full-dimen-
sional compact polyhedron ift? whose efficient point set is precisely equal to
the set of all efficient points of the outcome $&t for problem (MOLP). We will
therefore refer td’ as anefficiency-equivalent polyhedrdor Y=. The outer ap-
proximation algorithm to be presented will generate the entire efficiency-equivalent
polyhedrony for Y=. This will allow the user to immediately identify the set of all
efficient extreme points of the outcome $&t for problem (MOLP).

REMARK 2.1. A slightly-different form for an efficiency-equivalent polyhedron
from the one that we are using here can be found in [42, 43].

REMARK 2.2. Notice from Propositions 2.1. and 2.2. and from Theorem 2.1. that
even thouglt; = Y, the dimension o= may be strictly less than dim= p.

Let
B =maxe,y), St yeyY,

wheree € R? is the vector in which each entry is equal t6.1By Proposition 2.2.,
B is a finite number. Let® = § and, foreaclhy = 1,2, ... , p, definev/ € R? by

U_/':{)A’i X X if i # J,
! B+ —Ae,y) ifi=}
i =12,...,p.Inthe outer approximation algorithm for problem (MOLP), an

initial simplex containingY is constructed. This construction is based upon the
following result.

THEOREM 2.2. The convex hulls of V(S) := {v/ | j = 0,1,...,p}is a
p-dimensional simplex with vertex gétS), and S containsy .

Proof. Sincey < yA < yforally € Y, B — (e,y) > 0. For eachj =
1,2,...,p,

0 if i,
{ﬁ—<e,9> it i<, @)
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8 HAROLD P. BENSON

i =1,2,...p. The latter two statements imply the’ —v%) | j =1,2,..., p}
is a linearly independent set. Hende?, v, ... , v?} is an affinely independent
set, so that, by definitiors is a p-dimensional simplex with vertex s&t(Ss).

To show thatS containsY, suppose first thaf € Y. Theny < Yy, so that
7 -39 = (v —v% > 0. Furthermore,

(e, — %) < maxe, y — %)
yeYy

= max{e, y) — (e, vo)

yeY
=B —(e,0%)

where the latter two equations follow from the definitionsoind ofv°, respec-
tively. Since(y — v%) > 0, (4) implies that foreacli = 1,2, ..., p,

0< (-1, <B— (e ).

Therefore, we may choose scalars j = 1,2,..., p, such that for eachi =
1L2,...,p,0<a;<1land

7 =09, =a;(B— (e, ).
From (3), this implies that

p

G == o =), (5)
j=1
Notice that sincer; >0, =1,2,..., p,
P
aj ZZO.
j=1

P
Z a; >1
j=1
were true, then, using (3), (5), and this assumption, it would follow that

p
(e,y — vo) = Z a;e, vl — vo)

jogod52.tex; 30/06/1998; 12:37; p.8



AN OUTER APPROXIMATION ALGORITHM 9

which contradicts (4). Therefore,Q Zle a; < 1 must hold. Furthermore, from

5,

Since, foreacly =1,2,...,p,0< o; < 1,and 0< (1— Yh aj) < 1, this

means tha¥ is a convex combination db’/ | j =0,1,... , p}. Thereforey € S,
and we have shown that C S. O

The outer approximation algorithm for problem (MOLP) will also make use of the
alternate representation of the simplegiven in the following theorem.

THEOREM 2.3. The simplexs defined in Theorem 2.2. may also be written

S={yeN <y, ley) <B} _
Proof. Suppose thay € N7” is contained in the convex hull div’/ | j =
0,1,..., p}. Then we may choosg + 1 scalarsf;, j =0,1,2,..., p, that sum
to 1.0 and satisfy O< f; < 1foreachj =0,1,..., p, in such a way that

p
y=)_ fiv/,
j=0

As aresult,

p p
Y= 1"‘2{3 fi U0'+'§£: fiv’
j=1 j=1
p
=024+ > f (v =%
j=1
=35+ (B—(e. ) [, (6)

where f € R has componenty;, j = 1,2,..., p, the first equality holds
becausefy, f1, ..., f, sum to 10 and the third equality holds by the definitions
of v2, v%, ..., vP. From the proof of Theorem 2.28,— (e, $) > 0. This, together
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10 HAROLD P. BENSON

with (6) and the fact thaf > 0, implies thaty < y. Furthermore,

p
(e.3) =(e.9)+ Y fi (B—(e. )
j=1

p p
= (12 fj) (e.$)+B>  fi

j=1
p

= fole. ) +BY_ fi»
j=1

where the first equality follows from (6) and the third equality holds because the
sum of fo, f1,..., f, is 10. Since(e, y) < B holds from the proof of Theo-
rem 2.2, this implies that

P
eV < fB+BY. fi=8

j=1

Thereforey e {y e 7 | y < y, (e, y) < B}
Now suppose that € {y e R? | y < y, (e, y) < B}.Foreachj =1,2,..., p,
let
. ¥ —9;
aj i —/\7
(B— (e, y)

where, as shown previouskg — (e, $)) > 0. Sincey = v° and(e, y) < B,
B—(e.9)=pB— (e
> (e,7) — (e,1°)
= (e, -1, @)

sothatforeachi = 1,2,..., p, 3—v%; < B—(e, 3). Together with the facts that
y >3 =v2and(B — (e, $)) is positive, this implies that foreagh=1,2, ... , p,
0 < «; < 1. Furthermore, by the definition of;, j =1,2,... , p,

P T,
> = Za 0
j=1 /3_<€»)’>

— <€, 7) - <€, UO>
IB - (8, 5’)
<1 ®

where the inequality follows from (7) and the fact tligt— (e, y)) is positive.
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By the definitions ob/, j =0,1,..., p,ande;, j =1,2,...,p,

(e, )
=0+ [ -9
=7. 9)

Rearranging the left-hand side of (9), we obtain

P P - _ .0y . )
0+ o =) =04 Y w (v =%
j=1 j=1 B—le.y

p

1—26(/' UO+

j=1

o =7
aj v =Y.

-

~
Il
AN

From (8), since 0< «; < 1, this implies thafy belongs to the convex hull of
{fv/|j=0,1,...,p} O

From Proposition 2.2., we may choose a pgint intY, where intY denotes
the interior ofY. Starting with the simplexX defined in Theorem 2.2., the outer
approximation algorithm will iteratively generate a finite number of nonempty,
compact, polyhedra&*, k = 0,1,2,... ,K, such thatS = S 5> §* > ... >
SK-1 5 §K = v. In a typical iterationk, a vertexy* of S* will be identified such
that y* ¢ Y. Subsequently, the unique poimt on the boundary of that lies on
the line segment connectirjg and y* will be identified. The next result implies
that w* belongs toYwe. As we shall see, this fact will play an important role in
establishing the validity of the algorithm.

THEOREM 2.4, Letp € intY and suppose that > y andy ¢ Y. Letw denote
the unique point on the boundary Bfthat belongs to the line segment connecting
yandp. Thenw € Ywe

Proof. Suppose, to the contrary, that ¢ Ywe. Then we may choose a point
y0 € Y such thaty® > w. Sincey® € Y, we may also choose a poirt € X such
thatCx® > y°. ThereforeCx® > w.

By assumptiony ¢ Y andp € intY. SinceY is closed, and since belongs
to the boundary of and to the line segment connectin@ndp, this implies that
w = Ap + (1 — 1)y for somex that satisfies O< A < 1. By assumptiony > y
and, sincep € intY, p > y. From the previous two observations, it follows that
w > Y.

Choose:s > 0 such that < di ande < d,, where

dy=min{(Cx° —w); | j=1,2,..., p},
dzzmin{(w—)}\l)j|j=1,2,...,p}.

For anyv € N7, let |v|| denote the Euclidean norm of Suppose that € N, (w),
whereN,.(w) = {g € R? | |lg —w]| < €} is the open ball of radius centered atv.
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12 HAROLD P. BENSON

Then, foreacly =1,2,..., p, —e < (z; —w;) < €, which, upon rearrangement,
may be writtenw; — € < z; < w; + €. Sincee < dy, € < (Cx%; — w; for each
j =212 ...,p, and, since < dp, —¢ > y; —w; foreachj = 1,2,..., p.
Combining the latter two statements, we conclude that for gaehl, 2, ... , p,
¥; < z; < (Cx%);. Sincex? € X, this implies that € Y. It follows that the open
ball N.(w) is a subset of . Sincee > 0, this contradicts the fact that belongs to
the boundary of’, so that the proof is complete. O

From Proposition 2.2. and [49Y, is a p-dimensional polyhedron with a finite
number of faces, and a sEtC %i? is a face of Yif and only if F equals the optimal
solution setr*(«) to the problem

(Py) maXw,y), sSt.yeY

for somex € 7. Sincey < Cx for all x € X, by the definition ofY, this implies
that p of the (p — 1)-dimensional faces df are given by the sets

Fi={yeY|y =93}

j=12...,p. ltiswell known that foreach =1,2,..., p, eitherF; C Ywg
orri F;NYwe = ¥, where riF; denotes the relative interior &f;; see, for instance,
[7]. For eachj = 1,2,...,p, sincey € F; andy ¢ Ywg, this implies that

r F;NYwe = ¥. As aresult, the poinb in Theorem 2.4. lies in some fa¢eC Ywe

of Y that satisfies” # F; foreachj = 1,2,..., p. From [7], any such facé is
precisely equal to the optimal solution 3&t(«) of problem(P,) for somex € R”
such thatx > 0, a # 0. The following result provides a means for finding such a
face F and representing it in this way.

THEOREM 2.5. Assume thatv € Yweg, and let(w*' , v*') denote any optimal
solution for the dual linear program to the problem

(Qw) max t,

st. Cz—et>w, (20)
Az = b, (11)
z,t 20,

whereu* € NP andv* € R correspond to constraints (10) and (11), respectively,
of problem(Q,,). Thenu* > 0, u* # 0, andw belongs to the weakly efficient face
Y*(w*) of Y. Furthermore,Y*(u*) is given by
Y'w") ={yeY | " y) = (b v}

Proof. Let YS = {y € %” | y < Cx for somex e X}. For eachy e Y<,
let g(y) denote the optimal value of problet®,,) with w = y. Then, sincav €
Y, g(w) > 0. Infact, sincaw € Yy, itis easy to see that(w) = 0. Therefore, by
duality theory of linear programming, the dual linear program to probiéy),
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AN OUTER APPROXIMATION ALGORITHM 13
which is given by

(OD,) min  —(w,u)+ (b, v),
st. —ul'C+v'A

(e, u)

u

A\VAR\VAR\V]
o Pr O

also has an optimal value gfw) = 0.

Let (u*T, v*T) denote any optimal solution to problef® D,,). Then, from the
constraints of probleniQ D), it follows thatu* > 0, u* # 0. Furthermore, since
the optimal value of problertQ D,,) equals 0,

(w, u*) = (b, v"). (12)

Sinceu* > 0 andu* # 0, from [7] we know that the optimal solution sBEt («*)
for problem(P,+) corresponds to a weakly efficient facelafFrom this and (12), it
follows that if we show thaiv is an optimal solution to problertP,-), the theorem
will be established.

To show thatw is an optimal solution to probler¢P,-), notice first that by the
definition of Y, this problem can also be written

(Py)  max (u”,y)
st. —y <7,
y—Cz<0

Az =b,
0

Until we indicate otherwise in this proof, we will use the latter representation of
problem(P,+). The dual linear program to problef®,-) is given by

(D,«) min —(9,s)+ (b, q),
st. —sT 47 T
—r'C+4q"A

s, r

\VAAVART
oo =

Notice that sincew* , v*') is an optimal solution to problerdQ D,,), the vec-
tor (s7,r7,q") = (0T, u*T, v*T) is feasible in problen{D,-) and has objective
function value(b, v*) there.

Let (z*T, t*) be an optimal solution for problerfQ,,). Sinceg(w) = 0, this
implies thatt* = 0, Cz* > w, Az* = b, andz* > 0. Together with the fact that
w > $, this implies that(y”, z7) = (w”, z*') is a feasible solution for problem
(P,+) with an objective function value equal t@*, w). From (12), (u*, w) =
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14 HAROLD P. BENSON

(b, v*). Since(0”, u*" , v*") is a feasible solution for probleiD,) with objective
function value(b, v*), this implies by duality theory of linear programming that
o7, z7) = (w7, z*T) is an optimal solution to problerP,-). Thereforew is an
optimal solution to the representation of probléf)-) given by

(P,) maxu®,y), st yeY. ad

Theorem 2.5. will provide the basis for constructing certain linear inequality
cuts needed in the Outer Approximation Algorithm for problem (MOLP) to be
presented in the next section.

3. The outer approximation algorithm

The Outer Approximation Algorithm presented below uses results from Section 2
and the idea of outer approximation to generate the entire efficiency-equivalent
polyhedronY for the outcome se¥= of problem (MOLP). As we shall soon
see, this will allow the set of all efficient extreme pointstifi to be immediately
identified.

Outer approximation algorithm

Initialization step Compute a poinp € intY and construct the-dimensional
simplexS® = S containingY described in Theorems 2.2. and 2.3.. Store both the
vertex set/ (5°) of S° = § given in Theorem 2.2. and the inequality representation
of SO = § given in Theorem 2.3.. Sét= 0 and go to iteratiork.

Iterationk, k > 0. See Stepsl throughk4 below.

Stepkl. If, for eachy € V(S*), y € Y is satisfied, then stogy: = S*. Otherwise,
choose any* e V(S*) such thaty* ¢ Y and continue.

Stepk2. Find the unique value, of A, 0 < A < 1, such thaty* + (1 — A)p
belongs to the boundary af, and setw* = A, y* + (1 — 1) P.

Stepk3. SetS** = Sk N{y € NP | Wk, y) < (b,v")}, where @t , v*") is
any dual optimal solution to the linear progra@,,) with w = w* (cf.
Theorem 2.5.).

Stepk4. UsingV (S%) and the definition of*** given in Stepk3, determineV/ (S¥+1).
Setk = k + 1 and go to iteratior.

For eachk > 0, the inequality
(", y) < (b, v)

appended t8* in Stepk3 is called arinequality cut47, 48]. As we shall see, each
such inequality is constructed so tiat™! “cuts off” a portion ofS* containingy*
in such a way thas* > S**1 > v.
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AN OUTER APPROXIMATION ALGORITHM 15

Notice that except for Steg® andk4, the Outer Approximation Algorithm can
be implemented by using linear programming techniques. For instance, to compute
P €intY in the Initialization Stepp may be set equal to any strict convex combi-
nation ofy4’ andCz*, where(z*' , %) is any optimal solution to the linear program
(Q,) given in Section 2 withv = y*/. In Stepk1, to test a given point e V (S¥)
for membership irY’, one may apply the Phase 1 procedure of the simplex method
to problem(Q,) with w = y. It is easy to show that the other steps, apart from
Stepsk2 andk4, can be implemented by using linear programming as well.

Stepk2 can be executed by applying linear programming and standard univari-
ate search techniques. In particulbgr,in Stepk2 can be found by using univariate
search techniques to determine the largest value @ < 1 < 1, such that the
linear program(Q,,) is feasible withw = Ay* 4+ (1 — 1)p. The feasibility of this
linear program can be determined, for instance, via the Phase 1 procedure of the
simplex method.

The execution of Step4 can be accomplished via one of several special tech-
niques from the global optimization literature; see, for instance, [51-56] and a
review by Horst [57]. We expect from evidence in the global optimization literature
that as the dimensiop of the polyhedras*, k = 0,1, 2, ... , increases, executing
Stepk4 will, in general, become a computationally-demanding task. However, for
cases where < 20, any of the methods given in [51-56] can be expected to be
relatively efficient; see, for instance, [46, 58]. Fortunately, in practice, the number
of objective functiong in problem (MOLP) is almost invariably less than 20; see,
e.g. [3, 6, 59].

Notice also that, in contrast to many decision set-based approaches for problem
(MOLP), the Outer Approximation Algorithm avoids the need for complicated
bookkeeping or backtracking [6, 12, 29].

THEOREM 3.1. The Outer Approximation Algorithm is finite and, when it termi-
nates,SX = Y, wherek > 0is the final iteration number.

Proof. From Theorem 2.2., the initial simplex= S° of the algorithm contains
Y. Suppose that > 0 and thatS* D Y but S¥ # Y. Then in Stepkl of the
algorithm, an element* of V (5%) will be found such that* ¢ Y. By Theorem 2.3.
and Steqk3 of the algorithm, for any point € S, y > $ must hold. Since* e S*,
this implies thaty* > §. By Theorem 2.4. and Stef2, sincep < intY and
y* ¢ ¥, wk € Ywe. From Theorem 2.5. and StéB, {y € Y | (u¥, y) = (b, v*)}
is a weakly efficient face of containingw*. Sincep e intY, this implies that
(u*, p) # (b, v%). In addition, from Theorem 2.54%, y) < (b, v*) forall y € Y.
Therefore(u®, p) < (b, v*). Since(u*, w*) = (b, v*), by Stepk2 of the algorithm,
this implies thatu*, y*) > (b, v¥). Therefore, by the definition ¢f*** in Stepk3,
yk ¢ S¥*1. On the other hand, sinc® D Y and(u*, y) < (b,v%) forally e Y,
Sk+1 > y. By the choice ofk, we conclude that the algorithm generatiistinct
polyhedras*, k =0, 1,2, ..., such that

o858y
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16 HAROLD P. BENSON
Furthermore, for each > 0, from Stepk3,
St =8 N{y e WP | (Wb, y) < (b, V),

where{y € Y | (u¥, y) = (b, v¥)} is a face ofY. By Proposition 2.2., this implies
that the algorithm must be finite and it must terminate in some itera&iop 0
with SK =Y. O

When the algorithm terminates, the set of all efficient extreme points in the
outcome se¥ = for problem (MOLP) can be easily found by using the next result.

THEOREM 3.2. Let K > 0 denote the iteration number in whidf = Y and
the Outer Approximation Algorithm terminates. Let

E={yeV(E"|y>J}

ThenE is identical to the set of all efficient extreme pointy'of.
Proof. From Theorems 2.3.-2.5. and 3.1., and from 3t&mwf the Outer Ap-
proximation Algorithm,

sk=vy
K-1
={yeR[3<y, (e, <ﬁ}ﬂ(ﬂH,-),
i=0
where, foreachh =0,1,2,... , K — 1,
Hi={yeR’| W', y) < (b,v)}

and{y e Y | (u’, y) = (b, v')} C Ywe. Notice also that since > 0, the definition
of g implies that{y € Y | (e, y) = B} C Ywe.

Suppose that € E. Thenv € V(SX) = V(Y) andv > 3. Therefore, at least
of the inequalities

(e,y) < B
W, y) <(b,v), i=01...,K—1,

must hold as equations at= v. This implies that € Ywe.

To show thatv € Y, we will use a proof by contradiction. Towards this end,
suppose that ¢ Y. Then we may choose € Y such thaty > v andy # v.
Sincev € Ywg, y # v. Let

11:{16{1’2’ ’p}|yi:Ui}
and

L={ie{l,2 ...,p}|y > v}

jogod52.tex; 30/06/1998; 12:37; p.16



AN OUTER APPROXIMATION ALGORITHM 17

Thenly, I, #9andl,Ul, ={1,2, ..., p}. Foreach € I,, letn;, = y; —v; > 0.
ChooseM > 0 sufficiently large so that for eache I, v; — n;/M > ¥;, and
definev € R’ by

Vi, iel
T = ni
! v — —, i€l
M

Then, by the choice a¥7, sincev € ¥, v € Y. Also, sincel, # ¥, v # v.
Notice that

_ v, iely
Vi = v +n;, 1€l

so that

1M
= V.
M+1’ "M+l

Since O< [1/(M + 1)] < 1, this implies thab is a strict convex combination of
andv. On the other hand; is an extreme point of, andy,v € Y, wherey # v
andv # v, which is a contradiction. Therefore,e Yr must hold.

From Theorem 2.1., since € Yz, v € Y;. Thereforev € Y=. Sincev €
V(§K) = V(¥) andY= C Y, this implies that is an extreme point of =. Thus,
v is an efficient extreme point df=. By the choice ok, we have shown that is
a subset of the set of efficient extreme pointy ot

Now suppose that is an efficient extreme point df=. Then, sincev € Y=,
v > yA!. Sincey?! > 3, this implies thaty > 3. Thus, to complete the proof, we
need only to show that € V (SX).

Towards this end, assume, to the contrary, thatV (SX). Then, sincesX =Y,
v ¢ V(Y). Therefore, we may chooseé, z2 € Y andf € % such that! # v, 72 #
v, 0<6 <1, and

v

v=0z'+(1-06) (13)

From Theorem 3.1. in [60], sinceis an efficient extreme point of the polyhe-
dronY=, we may select a point € R”, u > 0, such thav is the unique optimal
solution to the problem

max(u, y), St.yeY~.

From the definition oft, this implies that is also the unique optimal solution to
the problem(P,), defined in Section 2, with = u. Therefore, sincet, z2 e Y,

(u,zl) < {u, v)
and

(u,zz) < (u, v)
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18 HAROLD P. BENSON
must hold. Since & 6 < 1, these inequalities imply that
0{u, zl) + (1—0){(u, zz) < (u, v).

From (13), the left-hand-side of the previous inequality equale), yielding a
contradiction. Therefore; € V(SX) must be true. O

Notice that in the Outer Approximation Algorithm, each of the Jéts*), k =
0,1,2,...,K,is explicity computed. From Theorem 3.2., this implies that the set
E of all efficient extreme points in the outcome §€t is essentially immediately
available upon termination of the algorithm.

REMARK 3.1. It can also be shown that when the Outer Approximation Algo-
rithm terminates, the weakly efficient outcome Bgt is given by

K-1
Yoe = [y e W |y = Cx for somex € X and(u’, y) = (b, v")},
i=0
whereKk is the iteration in which the algorithm terminates. As a redif; can be
recovered from the optimal solution sé¥s of the linear programming problems

max (u', y),

st y—Cx =
Ax =

x z
1.

O’
b’
Oa

i=012..., K-

4. Computational experiments

In order to perform some preliminary computational experiments, we have written
a prototype VS-FORTRAN code capable of executing the Outer Approximation
Algorithm on moderately-small instances of problem (MOLP). We then applied
this code to 30 randomly-generated problems.

The code implements Std@l of the Outer Approximation Algorithm by the
Horst-Thoai—DeVries method [54]. The univariate searches in&epe accom-
plished by simple bisection search, and linear programming tasks are performed
using the simplex method as implemented by the subroutines of IMSL [61].

To construct the data for thex n matrix C, them x n matrix A, and the vector
b € N™ required for each of the 30 instances of problem (MOLP), pseudoran-
dom numbers from uniform distributions were used. The experimental runs were
performed on an ES/9000 model 831 computer.

Some statistics summarizing the results of these computational experiments are
displayed in Tables 1 and 2. In Table 1, for each problem, the colkinaontains
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AN OUTER APPROXIMATION ALGORITHM 19

Table 1. Computational results for individual problems.

Problem m n p K |E| CPUtime (seconds)
1 4 11 3 10 12 1.65
2 4 11 3 16 16 2.10
3 4 11 3 19 28 284
4 4 11 3 13 11 2.14
5 4 11 3 3 1 093
6 5 10 3 8 5 1.41
7 5 10 3 7 3 1.52
8 5 10 3 11 8 236
9 5 10 3 12 6 2.03

10 5 10 3 16 17 291

11 5 10 2 4 3 1.02

12 5 10 2 4 3 1.04

13 5 10 2 5 4 1.12

14 5 10 2 5 4 1.05

15 5 10 2 8 7 1.31

16 10 15 2 6 5 1.88

17 10 15 2 3 2 1.36

18 10 15 2 3 2 1.29

19 10 15 2 7 6 1.99

20 10 15 2 4 3 1.60

21 10 15 3 3 1 1.41

22 10 15 3 25 48 7.53

23 10 15 3 17 22 5.83

24 10 15 3 22 30 7.57

25 10 15 3 5 5 175

26 15 20 3 23 23 13.90

27 15 20 3 35 54 24.40

28 15 20 3 6 5 348

29 15 20 3 16 14 8.39

30 15 20 3 29 38 16.17

the iteration number in which the Outer Approximation Algorithm terminated, and
the column| E| contains the total number of extreme points in the efficient outcome
set. Recall from Section 3 th& — 1 equals the total number of inequality cuts
added by the algorithm to the initial simpléx= S° to createY. In Table 2, the 30
problems are grouped by problem size into six groups of five problems each. For
each group, by using Table 1, we computed the average number of efficient extreme
points contained in the outcome set. These numbers are given in the last column of
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20 HAROLD P. BENSON

Table 2. Comparative statistics for domain and outcome sets.

Problem size Average no. of efficient points
m n p In domain set In outcome set
4 11 3 17.8 13.6
5 10 3 20.0 7.8
5 10 2 9.0 4.2
10 15 2 13.6 3.6
10 15 3 108.4 21.2
15 20 3 261.4 26.8

Table 2. For comparison purposes, for each problem size, the column immediately
to the left of the last column contains the average number of efficient extreme points
contained in the domain set for a group of five similarly-generated problems. We

computed these averages with the aid of the domain set-based algorithm ADBASE
[33].

Notice from Table 1 that for all but one of the 30 problems, the Outer Ap-
proximation Algorithm required fewer than 30 iterations. In addition, the number
|E| of efficient extreme points in the outcome sets of these problems is always
less than 55. As expected, asm or n increases, bothE| and the number of
iterationsK also increase, although Table 1 does not give sufficient evidence to
draw conclusions as to the relative influences of the sizgs af andn on |E| or
K.

Table 2 clearly shows for these 30 problems that over all problem sizes con-
sidered, the average number of efficient extreme points in the outcome set is less
than the average number of efficient extreme points in the decision set, often con-
siderably so. In addition, from this table, we see that in these 30 problems, as
the problem size increases, the ratio of the number of efficient extreme points in
the outcome set to the number in the decision set decreases quite rapidly. As a
result, while the average number of efficient extreme points in the domain sets of
the problems withn = 15, n = 20 andp = 3 grows to 2614, which is large
enough to possibly overwhelm the decision maker, the corresponding average in
the outcome set reaches only.26

5. Conclusions

We have seen that decision set-based vector maximization approaches for problem
(MOLP) are limited by problem size. In particular, as the size of problem (MOLP)
grows, the sizes of both the efficient decision ¥gtof this problem and the set of
extreme points iz grow quite rapidly. As a result, generating all ¥f. or the

set of all extreme points iXz and presenting the results to the DM can quickly
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AN OUTER APPROXIMATION ALGORITHM 21

become unworkable as the size of problem (MOLP) grows. This is because either
the computations required to generate these sets become impractical, or the results
are not useful to the decision maker because he or she is overwhelmed by them.

To attempt to mitigate the effects of problem size, we have presented a finite
algorithm, called the Outer Approximation Algorithm, for generating the set of
all efficient extreme points in the outcome set, rather than in the decision set, of
problem (MOLP). We have seen that solid motivations in theory and in practice
have been given in the literature for believing that outcome set-based approaches,
if carefully developed, should be superior to decision set-based approaches.

The Outer Approximation Algorithm can be implemented relatively easily by
using univariate search methods, linear programming techniques, and any one of
several special methods from the global optimization literature for generating new
vertex sets as linear inequality cuts are added to the containing polyhedra generated
by the algorithm. Furthermore, the Outer Approximation Algorithm does not call
for the use of any of the special accounting or backtracking procedures required
by many decision set-based approaches. Finally, since the number of objective
functions in problem (MOLP) is almost always less than 20, the global optimiza-
tion literature gives reason to believe that the outer approximation portion of the
algorithm should work efficiently.

Preliminary computational experiments that we have performed using a pro-
totype computer code that executes the Outer Approximation Algorithm demon-
strate, for 30 problems, the practicality of the algorithm. Those experiments also
tangibly demonstrate the usefulness in these 30 problems of using the outcome set
approach of the Outer Approximation Algorithm instead of a decision set-based
approach. In particular, in the larger problems, considerably fewer efficient extreme
points were found, on the average, in the outcome sets than in the decision sets.

As a result, we conclude that the Outer Approximation Algorithm offers sig-
nificant promise for solving applications of problem (MOLP) more easily than
decision set-based methods, and without overwhelming the decision maker. In
addition, these results indicate that the Outer Approximation Algorithm offers
promise for solving larger instances of problem (MOLP) than can presently be
solved by decision set-based vector maximization algorithms.
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